
The Next Evolution in
CI/CD Technology
A WHITEPAPER PUBLISHED BY THE
CD FOUNDATION’S CDEVENTS PROJECT TEAM

Updated May 2023

CDEVENTS - THE NEXT EVOLUTION IN CI/CD TECHNOLOGY - https://cdevents.dev

This whitepaper describes the newest technology in CI/CD – CDEvents. It is intended for DevOps
Engineers, Project Managers/Directors, CTOs, and Cloud Architects who are interested in evolving
their DevOps pipelines to become more scalable, robust, measurable, and visible, using a
technology-agnostic solution to provide interoperability.

The technology described is still in its very early stages, and the concepts in it could change quite
substantially as we go along, so please join us to make sure this technology evolves into something
we could all benefit from.

What is CDEvents
Today’s CI/CD systems often comprise of services that do not talk to each other in a standardized
way. Such services include pipeline orchestrators, build/test tools, deployment tools, metrics
collectors and visualizers. This leads to problems related to interoperability, notification of failure
issues, and poor automation.

The Continuous Delivery Foundation’s CDEvents project has been created to solve the
interoperability problem. The mission of the CDEvents project is to define standards for an
event-based CI/CD pipeline to support CI/CD systems with a decoupled architecture.

The CDEvents project focuses on both event-based CI/CD standards and best practices for
event-driven CI/CD systems. The CDEvents project aims to define the common language of the
CI/CD ecosystem events, so it provides a vocabulary, a specification as well as SDKs.

https://cdevents.dev
https://cdevents.dev/

CDEVENTS - THE NEXT EVOLUTION IN CI/CD TECHNOLOGY - https://cdevents.dev

CDEvents Benefits
CDEvents delivers:

•	 Easy to scale pipelines

•	 Increased automation between workflows

•	 A simple way to enhance or modify workflows

•	 Standardized notifications for metrics collectors and visualizers

A decoupled CI/CD architecture is easy to scale and makes the CI/CD pipelines more resilient to
failures, which is critical as the end-to-end software production and delivery pipelines grow more
and more complex, not least in a microservices architecture with thousands of independent
pipelines. Using CDEvents also increases automation when connecting workflows from different
systems to each other, and as a result, empowers tracing/visualizing/auditing of the connected
workflows through these events. Additionally, CDEvents make it super easy to switch between
different CI/CD tooling to enhance or modify your workflows quickly.

The Goal of the CDEvents Project
The CDEvents project’s mission is to standardize an event protocol specification that caters to
technology-agnostic machine-to-machine communication in CI/CD systems. This specification will
be published, reviewed, and agreed upon between relevant Linux Foundation projects/members.
The CDEvents project aims to provide reference implementations such as event consumers/
listeners and event producers/senders on top of for example CloudEvents.

History
Before we dive in further, a bit of history. The Continuous Delivery Foundation’s Interoperability
Special Interest Group(SIG) was created in early 2020 to discuss and research interoperability in the
CD space. One of the workstreams of the SIG was focused on interoperability through ‘events.’ In
early 2021 the workstream was transformed into a SIG of its own, and towards the end of that year,
the CDEvents project was created. The project was proposed as a CDF incubating project and was
accepted by the CDF Technology Oversight Committee in December 2021.

https://cdevents.dev

CDEVENTS - THE NEXT EVOLUTION IN CI/CD TECHNOLOGY - https://cdevents.dev

CDEvents Specification
To define CDEvents the contributors understood the need to define a common standard and
vocabulary. Following is a description of the specification.

CDEvents Topics
Events provide interoperability between CI/CD tooling through topics. Part of the mission of
the CDEvents project is to determine the best usage and process for CDEvents and to define a
common standard. The CDEvents project team is working to define:

•	 When are events suited for triggers, audits, monitoring, and management?

•	 Common guidelines for at-least-once, at-most-once, exactly once, and ordering logic.

•	 When to apply particular strategies

•	 Events to be used by tools for orchestration/workflows

•	 Pipeline to pipeline communication via events

•	 Tracing/auditing/graphing/visualizing of the entire process, e.g., through events showing what
has occurred.

•	 CDEvents Metrics, e.g., how many versions have been deployed, how many PRs (Pull Requests)
have been raised, and how many events have been issued?

•	 How are events related and how are they ordered (links vs trace context)?

CDEvents Vocabulary
Most CI/CD platforms define their abstractions, data model, and nomenclature. The interoperability
SIG has already been collecting this level of data from various platforms. Many labels are shared
across platforms, but sometimes the same label bears different meanings in different projects. To
achieve interoperability through events, a nomenclature with shared semantics across platforms
was seen to be essential. This nomenclature has its roots in the “Rosetta Stone” for CI/CD, first
initiated through the Interoperability SIG in CDF. The CDEvents vocabulary will continuously revise
its vocabulary based on the evolution of that document and related publications until the first
official release of the CDEvents protocol specification is published.

https://cdevents.dev

CDEVENTS - THE NEXT EVOLUTION IN CI/CD TECHNOLOGY - https://cdevents.dev

To achieve shared semantics, the CDEvents project first created a vocabulary describing six
‘buckets’ to group the different but common CDEvents together.

•	 Core Events: this includes core events related to core activities and orchestration that need to
exist to be able to deterministically and continuously be able to deliver software to users.

•	 Source Code Version Control Events: Events emitted by changes in source code or by the cre-
ation, modification, or deletion of new repositories that hold source code.

•	 Continuous Integration Events: includes events related to building, testing, packaging, and
releasing software artifacts, usually binaries.

•	 Continuous Deployment Events: include events related to environments where the
artifacts produced by the integration pipelines actually run. These are services running in
a specific environment (dev, QA, production), or embedded software running in a specific
hardware platform.

•	 Continuous Operations Events: include events related to the operation of services deployed in
target environments, tracking of incidents, and their resolution. Incidents, and their resolution,
can be detected by a number of different actors, like the end-user, a quality gate, a monitoring
system, an SRE through a ticketing system, or even the service itself.

•	 CloudEvents Binding for CDEvents: The CloudEvents Binding for CDEvents defines how
CDEvents are mapped to CloudEvents headers and body.

Within each ‘phase,’ a few abstractions have been defined. For instance, the ‘Core Events’ phase
defines “Task Runs” and “Pipeline Runs”. The ‘Continuous Integration Pipeline Events’ phase defines
“Build,” “Test Case,” “Test Suite,” and “Artifact.”

These phases can also be considered as different profiles of the vocabulary that can be adopted
independently. Also notice that the term ‘pipeline’ is used to denote a pipeline, workflow, and
related concepts. We also use the term ‘task’ to denote a job/stage/step.

With the vocabulary defined, CDEvents can be easily assigned to each phase. Within each phase,
abstractions can be assigned. For instance, the Core phase defines “Task Runs” and “Pipeline Runs”.

A Pipeline Run can be:

•	 Queued

•	 Started

•	 Finished

While these six ‘phases’ define the most common CI/CD activities, they are not exhaustive. In the
future, other activities may be included, for instance, monitoring.

https://cdevents.dev
https://github.com/cdevents/spec/blob/main/core.md
https://github.com/cdevents/spec/blob/main/source-code-version-control.md
https://github.com/cdevents/spec/blob/main/continuous-integration.md
https://github.com/cdevents/spec/blob/main/continuous-deployment.md
https://github.com/cdevents/spec/blob/main/continuous-operations.md
https://github.com/cdevents/spec/blob/main/cloudevents-binding.md

CDEVENTS - THE NEXT EVOLUTION IN CI/CD TECHNOLOGY - https://cdevents.dev

CDEvents Format
CDEvents can be encapsulated in different message/stream/event envelopes, and the first such
binding prepared by the CDEvents project uses CloudEvents with CDEvents-specific extensions and
payload structure, which is based on the CDEvent’s vocabulary.

CDEvents producers may use the payload to provide extra context to the event’s consumer. The
payload however is not meant to transport large amounts of data. Data such as logs or software
artifacts should be linked from the event and not embedded into the events. CDEvents follows the
CloudEvents recommendation on event size and size limits.

All CDEvents contain information such as the type of event, the source of the event, the time
the event occurred and a unique identifier. Depending on its type it also contains multiple other
attributes, of which some are mandatory and some are optional.

For more information about the CDEvents format, please visit the CDEvents Documentation site.

CDEvents Use Cases
Use cases are key to understanding CDEvents. When defining CDEvents and their attributes, we
must know what minimal set of information is needed to satisfy a particular use case. There are two
root use cases:

•	 The first use case is interoperability, making it possible for one CI/CD tool to consume events
produced by another without the need for ‘static’ imperative definitions. This use case focuses
on how to make CI/CD tools work together in a more automated, streamlined manner.

•	 The second one is observability and metrics. Essential to improving the CI/CD pipeline is the
ability of the pipeline to collect events from different CI/CD tools. This collection is essential for
the pipeline to correlate CDEvents and process them consistently, building an end-to-end view
of the overall CI/CD workflow.

https://cdevents.dev

CDEVENTS - THE NEXT EVOLUTION IN CI/CD TECHNOLOGY - https://cdevents.dev

Use Case One: Interoperability
In most enterprise organizations, it is impossible to have one CI/CD setup to rule all development
projects. Different languages, platforms, and tooling might be required for each. For this reason,
most organizations want to let teams choose their own optimal CI/CD setup. Let’s consider the
following use case. In our fictional organization, many of the software development teams prefer
to use Zuul for its dependency handling and scalability. But other teams prefer GoCD. Some teams
started using GitLab and prefer a central platform for source code and the project tools. Other
teams prefer Jenkins and rely on a wide variety of plugins. To further complicate things, our fictional
company doesn’t build all the software in-house. They instead use suppliers.

As our fictional company needs to understand and receive software modules built using different
tooling. The problem is that Zuul artifacts are a bit different from GoCD artifacts, which is a bit
different from GitLab artifacts, or artifacts produced by a custom Jenkins build. The solution is to
write custom translation or “glue code” to be able to understand and receive all these diverse built
software modules.

And this diversity does not apply only to building artifacts. It can apply to many steps in the pipeline,
including:

•	 Source changes

•	 Build activities

•	 Test runs

•	 Failures

•	 Compositions (multiple artifacts)

•	 Announcements

In a CDEvents-based system, it is unnecessary to develop custom ‘glue code’ for each activity.
To allow our fictional company to announce new artifacts in a standardized format, CDEvents
has predefined the format taking care of the interoperability between the diverse build systems.

Use Case Two: Visualization and Metrics
Consider the following CI/CD setup. Code is written and maintained on GitHub. When changes
are made, they go through different tests, maintained by different teams, which use different
technologies. Some tests are running in GitHub directly as GitHub Actions. Some others are
executed in Jenkins and others as Tekton pipelines. Releases are managed through Tekton as well,
while deployments are managed with Argo. Keptn is used to manage remediation strategies on
production clusters.

https://cdevents.dev

CDEVENTS - THE NEXT EVOLUTION IN CI/CD TECHNOLOGY - https://cdevents.dev

If all these systems supported events in some predefined format, they could be easily collected.
When they are not unified, teams must build event collectors that support multiple ways of
collecting payloads. For example, both Tekton and Keptn use CloudEvents, but there is no shared
semantics for interacting between them.

The goal is to have all platforms share the same format for events allowing a standard event
collector across all tools and platforms managing CI/CD pipelines. For example, to visualize the flow
of a change from when it’s written, through the test, release, deploy, and possibly rollback, there
needs to be enough information in the events to be able to correlate the data across all tools.
CDEvents addresses unifying the data through a standard event collector.

Tracking metrics across the CI/CD Pipelines is critical to improving development processes by
answering the question ‘How effective is the DevOps setup.’ To answer that question metrics need
to be commonly defined, collected, and visualized. CDEvents collect data from heterogeneous
sources, making it possible to store and process it consistently.

CDEvents Proof of Concept
The CDEvents contributors completed a Proof of Concept using Tekton and Keptn. The PoC shows
a combined effort between Keptn and Tekton. In the PoC Tekton played the role of the pipeline
executor doing the heavy lifting with building and deploying whereas Keptn handled the business
decision. More information about the PoC can be found on the PoC GitHub page.

Your Next Steps (Call to action)
Get involved in the CDEvents project at the Continuous Delivery Foundation. CDEvents will be
critical as we move away from traditional monolithic development models to cloud-native models
where decoupled applications require thousands of CI/CD workflows. Building a standard CDEvents
protocol specification that can be easily supported by all CI/CD tooling is required. Contributing to
the CDEvents team is a way for you to get involved in solving this critical piece of the CI/CD puzzle.

Get involved by going to https://cdevents.dev/community/. You will find community information
which is the easiest way to get started.

https://cdevents.dev
https://cdevents.dev/community/

CDEVENTS - THE NEXT EVOLUTION IN CI/CD TECHNOLOGY - https://cdevents.dev

Conclusion
CDEvents is the next evolution of CI/CD pipeline orchestration and visualization. Every DevOps
Engineer has understood the challenges of building ‘plugins,’ ‘glue code,’ and one-off scripts to build
a single CI/CD pipeline. CDEvents will revolutionize the way pipelines are coordinated and unified
providing the end-to-end CI/CD pipeline visibility and data collection needed for both processing
and tracking key workflow metrics. And most critically, as we move into a cloud-native architecture
with microservices, scaling the end-to-end CI/CD pipeline to thousands of workflows is already
happening. CDEvents will allow your pipeline to scale, and make it easy to stand up a new workflow
as often as needed.

Learn more at cdevents.dev

About the Continuous
Delivery Foundation
The Continuous Delivery Foundation (CDF) serves as the
vendor-neutral home of many of the fastest-growing projects
for continuous integration/ continuous delivery (CI/CD). It
fosters vendor-neutral collaboration between the industry’s
top developers, end-users, and vendors to further CI/CD best
practices and industry specifications. Its mission is to grow
and sustain projects that are part of the broad and growing
continuous delivery ecosystem

https://cdevents.dev
https://cdevents.dev/

