
Scaling Up: 
Orchestrating 
CI/CD in a Large 
Organization



•	 CHALLENGE: Improve the software release 
process to ship faster and more often to make 
the process less painful. 

•	 SOLUTION: To create a provenance store that 
keeps track of events and would allow them 
to create, retrieve, and query events, event 
receivers, and groups of event receivers.

•	 IMPACT: The implementation resulted in 
improved automated testing, software promo-
tions, security scanning and auditing, as well as, 
pipeline auditing.

BY THE NUMBERS

•	 3000+ developers

•	 185,500+ events sent per day

•	 Thousands of artifacts shipped per week

ABOUT SAS
SAS is a global leader in data and AI. With 
SAS software and industry-specific solutions, 
organizations transform data into trusted 
decisions. SAS gives you THE POWER TO KNOW®.

In the late 1960s, eight Southern United-States 
universities came together to develop a general-
purpose, statistical software package to analyze 
agricultural data. North Carolina State had always 
been a leader in developing code for analyzing 
agricultural data, so it was a natural fit to house 
the project at the university’s Cox Hall because 
the mainframe there could process enormous 
amounts of data. 

The resulting program—the Statistical Analysis 
System—gave SAS both the basis for its name 
and its corporate beginnings. Since then, SAS has 
grown to become one of the largest privately held 
software companies in the world. Their focus 
is delivering value through their products and 
services while advancing education in data literacy 
and AI.

BACKGROUND
In 2019, SAS realized their R&D needed to move 
faster to stay competitive. Up until that point, the 
software release process consisted of two to three 
large-ship events per year and updates were slow 
and often painful. 

To reverse that trend, the team set out to shorten 
the development cycle and deliver artifacts more 
quickly. The challenge was twofold:

1.	 Create a system that facilitated disparate 
pieces of the pipeline to communicate and 
chain together.

2.	 Help R&D shift gears from the old software 
development model to Continuous Integration/
Continuous Delivery (CI/CD).

CHALLENGES
Interoperability, Automation

INDUSTRY
Analytics and AI

LOCATION
Cary, NC, USA

PUBLISHED
May 2025

AUTHORS 
Andrew Larsen 
Senior Software Developer, SAS 

Brett Smith 
Distinguished Software Developer, SAS

PROJECTS



In a happy, imaginary world somewhere, the 
team could have chained together GitHub actions, 
or equivalent, into a working pipeline without 
needing to develop something tailored, but the 
reality wasn’t so simple. 

SAS’s source code was (and still is) spread 
across several different source management 
systems and only a few of them had modern CI/
CD features. To further complicate matters, the 
company’s build system is old, some parts older 
than others, which makes it tricky to modernize. 
SAS also delivers most of its software as an 

Independent Software Vendor (ISV) rather than 
hosting it as a service—so they have to support 
the latest version in addition to other supported 
versions previously shipped to customers. To 
confront the myriad of problems, they needed 
an ecosystem-agnostic solution that was simple 
enough to work anywhere.

Their solution was Event Provenance Registry 
(EPR), or rather, the precursor to it, which can 
be compared to duct-taping a Raspberry Pi to a 
tractor. EPR is the glue that enabled the rest of 
the pipeline to really take off.

EVENT PROVENANCE REGISTRY
Event Provenance Registry is a culmination of 
several years of SAS’s effort to convert from large-
ship events to CI/CD. They built the first version 
internally to facilitate CI/CD in a complex, aging 
build system. The result enables SAS to build, 
package, scan, promote, and ship thousands of 
artifacts daily.

Event Provenance Registry (EPR) is a provenance 
store. It keeps track of events. With EPR, you can 
use the API to create, retrieve, and query events, 
event receivers, and groups of event receivers.

The Event Provenance Registry (EPR) is a service 
that stores events and tracks event-receivers and 
event-receiver-groups. EPR provides an API that 
lets you create events, event-receivers, and event-
receiver-groups. You can query the EPR using the 
GraphQL endpoint to get identifying information 
about events, event-receivers, and event-receiver-
groups. EPR collects events from the supply chain 
to record the lifecycle of a unit in the SDLC. EPR 
validates event-receivers have events. EPR emits 
a message when an event is received, as well as 
when an event-receiver-groups is complete for a 
unit version.

https://github.com/sassoftware/event-provenance-registry
https://www.sas.com/en_us/home.geo.html


CHALLENGES
EPR was, and is, a successful project internally. 
That doesn’t mean SAS didn’t encounter problems. 
Here are a few issues they ran into that you can 
hopefully avoid if you choose this route for your 
organization.

LACK OF ACCESS CONTROL 
FOR RECEIVERS AND GROUPS

The first problem was the lack of restrictions 
on who could use receivers and groups. This 
meant that anyone could post passing events 
to any receiver, which in turn, could trigger any 
associated groups.

Add some lazy message matching, and suddenly 
you find yourself releasing thousands of artifacts 
without intending to (yes, this truly happened). 
The team discussed adding serious Role Based 
Access Control (RBAC) to receivers and groups 
but decided not to in favor of development speed. 
Now that EPR is open sourced, they intend to 
implement a more robust solution soon.

DIFFICULT ADOPTION

Once the hard work of writing EPR was done, 
getting the rest of the company to adopt the 
fancy new tool should have been easy, in theory, 
but it was the next hurdle. 

People don’t like change and developers are 
no different. SAS discovered that developers 
especially don’t like being handed a box of virtual 
LEGO bricks and told to “use these tools to 
integrate with EPR.” Many developers prefer to 
live in a world where they don’t need to worry 
about the intricacies of DevOps, in addition to 
their normal work.

The average developer has no idea how EPR 
works, and they prefer to keep it that way—which 
is the mindset the EPR team had to combat. To 
get them to adopt it, they had to make it as 
minimally intrusive as possible. Forcing people 
to learn new technology tends to make them 
complain, which leads to management pushback. 

For a smooth transition, make sure you have 
management backing you and make it easy for 
people to adopt your technology. The battle is as 
much political as technical.

LAZY RECEIVER SCHEMAS

In the interest of speed, the team formed the 
habit of filling out their receivers with empty JSON 
schemas. While perfectly valid by EPR standards, 
this type of lazy schema validation set them 
up for some nasty problems later. There were 
many cases where they started running analytics 
on events sent to a particular receiver—a good 
example is processing security scan results 
stored in the event. The problem is that without 
a schema to validate the event contents, nothing 
prevents a user from posting complete garbage 
to your receiver. Empty schemas are fine for 
development, but not so great in production.

INCONSISTENT EVENT TYPES

When the development for EPR started, there 
were, and still are, no standard event types. Users 
are largely left to determine their own event 
types. This can lead to confusion where events 
for two separate groups mean the same thing 
but are named differently. CDEvents would have 
been useful in solving this problem had the team 
known about it at the time. Consistent messaging 
makes it much easier to tell what’s going on, 
especially when disparate groups produce 
millions of events.

CDEVENTS

Receivers can have multiple events that 
correspond with them. Any events associated 
with a receiver must have a payload that complies 
with the schema defined on the receiver. This 
allows some guarantees about what kind of data 
you can expect of events going to any given 
receiver.

Enter the CDEvents spec. This spec provides 
a standard on which to build interoperability 



between CI/CD systems. CDEvents promote a 
system-agnostic approach, where any system 
speaking the normalized CDEvents vocabulary 
can respond to events from any other system 
without prior knowledge about the originating 
system. This facilitates interoperability and 
flexibility.

Integrating CDEvents with EPR allows 
efficient event exchange and processing. It is 
straightforward to integrate when the target 
technology already understands CDEvents. 
Messaging systems can handle event propagation, 
while Channel Adapters and Message Translators 
help legacy systems share and consume 
CDEvents without built-in support.

BENEFITS

It wasn’t all doom and gloom. Most of the 
challenges were overcome and SAS saw massive 
improvements in several key areas.

GREATLY IMPROVED AUTOMATED TESTING

One of the biggest improvements EPR allowed 
was the mass automation of the integration test 
suite. SAS ships dozens of microservices that 
need to be tested together. The test automation 
team leveraged EPR to control microservice 
deployments and test result collection. Using 
event receiver groups, they gate the promotion of 
artifacts based on test results.

AUTOMATED SOFTWARE PROMOTIONS

Automated promotions go hand in hand with 
testing. Like many other companies, SAS divides 
its artifacts into different promotion levels (dev/
test/prod) based on their ship readiness. 

They wrote a watcher to handle artifact 
promotion based on event receiver group 
completion. That way, they can ensure that 
artifacts are only promoted if their criteria pass, 
which could include passing integration tests, 
clean security scans, stakeholder signoff, etc. If 
you’re willing to write the automation, there’s no 
limit to what you can do.

AUTOMATED SECURITY SCANNING AND 
AUDITING

EPR messages are used to trigger several types 
of security scans. Combined with special test 
containers that examine the test results, SAS 
can prevent artifacts from shipping if they don’t 
pass their scans. Watchers can then create work 
tickets for the artifact owners. Not only that, but 
they also use EPR messages to coordinate the 
delivery of scan results for further analysis with 
other tools. This has dramatically reduced SAS’s 
remediation time and allows us to locate any CVE 
(Common Vulnerabilities and Exposures) in their 
codebase within minutes.

PIPELINE AUDITING

In the same vein as security scanning, EPR 
provides an immutable record of how an artifact 
traveled through the pipeline. Failed pipeline 
tasks are tracked by NVRPP and the team can 
see exactly what event failed. From an auditing 
standpoint, the team can prove they did their due 
diligence with security scan results and signoffs. 
Every pipeline action is tracked.

https://cdevents.dev


LOOKING 
FORWARD
The EPR project has now been open sourced 
under the Apache 2.0 license. We still have 
features to add like an RBAC, OIDC, Event 
signing, and a Rust SDK. There is an open source 
Python SDK and a workshop for learning EPR. 
Contributions are welcome, and we hope to get 
things rolling again soon.

https://github.com/sassoftware/event-provenance-registry/tree/main

