
Developing
Complex
End-to-End
CI/CD Pipelines
at Ericsson

CHALLENGE
How does Ericsson gain scalability and observability
from the beginning of the library component pipeline
all the way to the end of the customer deployment
pipeline? Ericsson has hundreds of products
developed by thousands of teams that may have
different ways of working and use different tools as
part of their Continuous Integration and Continuous
Delivery (CI/CD) pipelines. The CI/CD pipelines
developed and used by the teams are interconnec­
ted, often going beyond internal organizational
boundaries. The use of various tools that don’t
share a standard interface is a challenge that needs
to be addressed. Ericsson has very high demands
on its CI/CD pipelines and production systems, such
as traceability and performance indicators from the
commit of the lowest library component up to the
customer deployment of Ericsson solutions.

SOLUTION
A common event specification supported by the
variety of tools and technologies gives the interop­
erability needed to achieve the scalability and
observability required by Ericsson.

For this user story, we will use the following defini­
tions of observability and scalability.

OBSERVABILITY: In distributed systems, observ­
ability is the ability to collect data about program
execution, internal states of modules, and commu­
nication between components.

SCALABILITY: Scaling software development to
handle products with thousands of developers and
hundreds of product components.

IMPACT
The event specification developed by Ericsson,
Eiffel, allowed different parts of the organization
to achieve scalability, traceability, and visibility

within the CI/CD pipelines due to the integration of
protocol into various tools such as Gerrit, Jenkins,
and Argo Workflows. This further allowed the
organization to bring new tools into the pipelines,
such as artifact repositories and test frameworks,
without impacting the existing pipelines.

BY THE NUMBERS

•	 20K developers

•	 Over 3 million CI/CD pipeline-related
events per day

CHALLENGES
Interoperability, Traceability, Scalability

INDUSTRY
Telecommunications

LOCATION
Global

PUBLISHED
May 2023

AUTHORS
Kristofer Hallén, Principal Developer,
CI Tools Architect
Emil Bäckmark, CI/CD Architect
Mattias Linnér, CI/CD System Architect

PROJECTS

https://en.wikipedia.org/wiki/Software_observability

TACKLING CHALLENGES IN
INTEGRATING CROSS-
ORGANIZATIONAL CI/CD PIPELINES
Long gone are the days when everyone coded a
small piece of software that was compiled towards
a specific hardware platform and delivered as such.
Nowadays almost any application has dependencies
on infrastructure software in multiple layers, with
virtual machines, containers, orchestration engines,
and so on.

At Ericsson, we’ve established a complex end-to-
end software delivery flow with thousands of teams
and tens of thousands of developers. In this case
study, we’ll tell you how we went about addressing
scalability issues with CI/CD technologies while
achieving traceability and reproducibility. We’ll also
share how they can be tackled using event-driven
integration pipelines based on experience from
large-scale software development.

ABOUT ERICSSON
Ericsson is a global company with headquarters
in Sweden that has been around for over 140
years and now has over 100 thousand employees
worldwide, and over 20 thousand of them are
developers. As one of the leading providers of
Information and Communication Technology (ICT)
to service providers, Ericsson enables the full value
of connectivity by creating game-changing technol­
ogy and services that are easy to use, adopt, and
scale, making our customers successful in a fully
connected world.

Ericsson has a strong background in telecom
hardware. Hardware is still an important part
of today’s customer offerings, but Ericsson has
become, to a large extent, a software company.
We develop software for all kinds of deployments,
ranging from embedded bespoke hardware to
Commercial off-the-shelf (COTS) hardware and in
the cloud. We produce a lot of different deploy­

ment variants as our customers—ranging from
operators providing high-coverage services in rural
areas to those providing high-capacity services in
metropolitan areas—have very diverse needs. We
also have customers running Continuous Deploy­
ment to live networks. This case study will provide
valuable input to developers of CI/CD services and
products and institutions that face challenges while
establishing and running complex end-to-end CI/
CD pipelines.

Nowadays almost
any application has

dependencies on
infrastructure software

in multiple layers.

BACKGROUND
In 2010, Ericsson had waterfall development with
teams specialized in different aspects of the soft­
ware development lifecycle: development teams,
integration teams, system testing teams, and so on.
We didn’t implement a lot of automated integration
or system tests and had few automated deliveries
between teams and products. In the best case, we
had cron jobs that were scheduled, sometimes
running tests daily, and we had test scripts located
on shared folders on a server located somewhere
within the organization.

There was an expectation from our customers that
we should be able to release and deliver software
faster and more frequently which was a catalyst for
our investment in tools that could help us achieve
those goals. We started to deploy more advanced
tools and began using Hudson. We replaced
the cron jobs that ran our regression tests with
Hudson jobs. The development teams sometimes
triggered the unit tests automatically on source
code changes, using tooling developed internally
on top of Rational ClearCase which was the main
source control management (SCM) system in use
in Ericsson at that time.

Automated integration started with development
teams and integration teams connecting their
pipelines together, but the integration and system
tests still were mostly scheduled. We started mov­
ing the test scripts to the SCM system, enabling
version-controlled test environments as well as
the possibility to trigger pipelines automatically
based on the updated test scripts.

Soon after, in 2011, Jenkins replaced Hudson. We
migrated from Rational ClearCase to Git for most
of our source code, and more and more of the
test code was also added to Git. Around this time,
Continuous Integration became a buzzword and
our automated interaction increased when the
system test teams connected to the integration
teams’ pipelines. We reduced manual handovers
with these automations and decreased time from
commit to quality-tested products from weeks to
days. The manual interaction points decreased as

more dependencies were integrated and with that,
the quality increased because we had more precise
delivery process predictions. This shift in tooling
and process increased our ability to react to market
changes and gave us the possibility to bring new
features and corrections to customers faster.

The automation journey was not trivial, we had a
lot of team-specific Jenkins instances, managed
by the teams themselves. This was mitigated by
introducing centrally managed Jenkins instances
but each team had unique needs for specific
plugins, which was costly to handle. There seemed
to be no end to these increased integration points
and it is something we are still encountering as
we continue to integrate more and more teams,
products, and tools.

As a global company, we have teams in multiple
locations and time zones, each with their needs
for builds, integrations, and different toolchains.
This added complexity makes it very hard to know
the origin of the commits and where they are in
the delivery chain. A lot of manual work was also
needed to figure out the configuration management
part: what does the release contain and how well
was it tested?

In concurrence with the increased automation,
we received increased market demands to react
quickly with top-quality service. At the time, our
setup didn’t scale. We needed large-scale Con­
tinuous Integration and Delivery and needed to
integrate small changes often with fast feedback.

https://en.wikipedia.org/wiki/Hudson_(software)
https://en.wikipedia.org/wiki/Rational_ClearCase
https://www.jenkins.io/
https://git-scm.com/

WHY DON’T WE JUST ALIGN TOOLS?
As already mentioned, Ericsson needs to support
a number of different products and technology
stacks in our CI/CD system, from software devel­
opment for our own silicon to microservices in the
cloud. This level of complexity makes it practically
impossible to align all parts of the toolchain.
Additionally, the CI/CD Landscape is constantly
evolving without a single solution to rule them all.

We want to be able to change our toolset based on
our changing requirements whenever necessary.

The current trend is that the number of interaction
points between tools will continuously increase. In
the past, Ericsson had a few servers and tools that
were responsible for handling the pipelines. Today
the multitude of tools and services adds another
level of complexity to the CI/CD cake.

As an example, let’s say we have these generic
tool types in our CI/CD system: SCM system - Pipe­
line engine - Build System - Artifact Repository -
Test system - Deployment tool, and we have these
tools in place to build up a certain such CI/CD
system: Gerrit - Jenkins - GNU Make - Proprietary
artifact repository - Proprietary test framework -
Proprietary deployment tool. Now, there could be
multiple reasons to replace one or several of those
tools with something else. For example, there
could be a wish to migrate to something like this:
Bitbucket - Tekton - Shipwright - Artifactory - Test­
kube - Flux CD, and at the same time incorporate
tools from new domains to increase the functional­
ity of the pipeline, like Pyrsia and Harbor.

Migrating everything at once is not a robust way
to keep CI/CD operational. How could that be
done in an iterative manner and at the same
time keep existing monitoring capabilities and
the history of all performed builds? One way to
deal with this is to make sure all tools use and
communicate through a standardized protocol
on a standardized channel with broadcast and
publish-subscribe possibilities.

Most tools have their own custom interfaces and
languages. We could integrate point-to-point with
plugins between these components and translate
the languages between them, but a standardized
protocol would bring interoperability out of the

box. This approach is comparable to spoken lan­
guages. Instead of the Swedish authors writing this
case study in Swedish, which would force many
readers to find a translation tool that might give

you the right understanding of the text, we agree
on a common language, in this case, English. This
can be used to create understanding even though
we in our own context speak another language.

SOLUTION: COMMUNICATION
IS THE ANSWER
How can we achieve scalability, traceability, and
observability without sacrificing the flexibility of
using different tools and technologies as part
of our production systems? What about using
broadcasted events sent as messages by the CI/
CD pipelines to communicate activities such as the
successful build of a new artifact, the confidence
reached in testing that artifact, and the availability
of a new release?

Apart from signaling new artifacts, test results,
and releases, many other challenges can be dealt
with by the use of events. Instead of subscribing
to release emails, polling the websites of the
product, or waiting for some tweets to announce
a new release, the CI/CD pipelines could listen to
standardized events. This means that when your
CI/CD pipelines know, you will also know because
you’re probably monitoring your pipelines. You can
also build/configure custom visualization solutions
that take its input from the event data and data
referenced from it.

EVENTS IN ERICSSON’S CI/CD PIPELINE

Ericsson started using events long before the CI/
CD pipelines became too complex. We sent events
internally to notify about:

•	 new builds,

•	 artifacts being uploaded to artifact repositories,

•	 quality level that a certain artifact had reached,

•	 after each test activity,

•	 and new releases.

The people integrating the software down the chain
could then decide on what pre-defined quality
level they wanted to integrate that upstream
product from. The events sent were standardized
in a protocol that was agnostic to the underlying
technology stack. We could replace the technology
in the stack without affecting interconnected
pipelines and other consumers of that event data.

Developers at Ericsson created a high-level lan­
guage used in this protocol, using words that we
used in conversation, which was a great bonus
since it helped us establish a common spoken
language across the organization. The protocol
evolved to include more and more notifications,
and in 2016 it was open sourced under the name
Eiffel. It has helped Ericsson and other companies
to achieve scalability, traceability, and visibility in
complex end-to-end CI/CD pipelines.

Eiffel is based on the concept of decentralized
real-time messaging providing traceability and KPIs

throughout your
pipelines, across
platforms. One
important aspect
of the Eiffel
protocol is that
the events are linked together, forming a Directed
Acyclic Graph (DAG) of notifications from the CI/CD
system. This linking made it possible to visualize
and measure the pipelines in a tools-agnostic way.
The picture below shows a real-world example
of such visualization with ongoing and finished
activities through our network of pipelines.

This protocol that we are using has artifact events
notifying that new artifact versions have been
created, published, or verified. We have source
code events notifying that something is pushed or
merged in a source control management system,
or if a new baseline is created. We also have activity
events, notifying about the triggering, starting and
finishing of our pipelines, pipeline steps, test case
execution, etc.

What the implementation of events helped us
achieve isn’t limited to commercial product
development. We believe that events can help
also when tackling similar challenges in inte­
grating software between different open source

communities as well as while bringing those open
source components into commercial development
as dependencies. The open source projects used
by the commercial products could be automati­
cally updated based on the information in those
standardized events published by the open
source communities which could open up a lot
more possibilities from the supply chain security
perspective.

https://eiffel-community.github.io/
https://en.wikipedia.org/wiki/Baseline_(configuration_management)

LOOKING FORWARD
Cloud native technologies are now also part of the
telecom industry and we want to benefit from the
solutions and principles in the CI/CD area. Tools
like Jenkins are being challenged by e.g. Argo
Workflows and, in the CD area, by Flux. These tools
provide new capabilities for our flows but require
expensive integrations.

Our teams now see the benefit of using events for
interoperability, we can change the tools we use
but the events are still there, keeping everything
connected. The challenges we faced while estab­
lishing and running complex end-to-end pipelines
and our approach to solving them using events has
made us realize that this is something we should
collaborate on in broader open source communities,
between organizations and like-minded individuals.
To start the conversations around this topic and
push the CI/CD domain forward, we participated in
forming the Interoperability Special Interest Group
(SIG) at CD Foundation at the beginning of 2020.
The conversations within the SIG resulted in the
creation of a new Events SIG followed up by the
creation of the CDEvents project which is currently
being developed by contributors from several dif­
ferent companies and open source organizations
in a collaborative manner.

CDEvents aims to create a
common specification for CI/
CD events to make sure the
CI/CD ecosystem has a com­
mon event protocol natively
supported by different open
source CI/CD tools such as Jenkins, Spinnaker,
Tekton, and any other tool in the CDF Landscape.

Our vision is to allow taking any such tools and
connecting them together in a pipeline with very
little effort as the CDEvents protocol binds them
together giving us traceability and visibility of
what happens in the pipeline. This would help the
users of these technologies to not have to develop
custom solutions and glue code to get them to talk
to each other and instead rely on interoperability
among them made possible by CDEvents.

We are proud that our work at Ericsson inspired
and helped shape the CDEvents project at the
CD Foundation.

Our vision is to allow
taking any such tools and
connecting them together in a
pipeline with very little effort
as the CDEvents protocol
binds them together giving us
traceability and visibility of
what happens in the pipeline.

https://github.com/cdfoundation/sig-interoperability
https://github.com/cdfoundation/sig-interoperability
https://github.com/cdfoundation/sig-events
https://cdevents.dev/
https://spinnaker.io/
https://tekton.dev/
https://landscape.cd.foundation/

