
 Tekton
 Security Assessment

 March 8, 2022

 Prepared for:

 Andrea Frittoli, Christie Wilson, Dibyo Mukherjee, Vincent Demeester

 Linux Foundation

 Prepared by: Alex Useche and Shaun Mirani

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 80+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Tekton Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2022 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to the Linux
 Foundation under the terms of the project statement of work and has been made public at
 the Linux Foundation’s request. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits..

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and mutually agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As such, the findings documented in this
 report should not be considered a comprehensive list of security issues, flaws, or defects in
 the target system or codebase.

 Trail of Bits 2 Tekton Security Assessment
 PUBLIC

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 3

 Executive Summary 5

 Project Summary 6

 Project Goals 7

 Project Targets 8

 Project Coverage 9

 Summary of Findings 10

 Detailed Findings 12

 1. The use of time.After() in select statements can lead to memory leaks 12

 2. Risk of resource exhaustion due to the use of defer inside a loop 14

 3. Lack of access controls for Tekton Pipelines API 15

 4. Insufficient validation of volumeMounts paths 17

 5. Missing validation of Origin header in WebSocket upgrade requests 19

 6. “Import resources” feature does not validate repository URL scheme 21

 7. Insufficient security hardening of step containers 23

 8. Tekton allows users to create privileged containers 24

 9. Insufficient default network access controls between pods 26

 10. “Import resources" feature does not validate repository path 28

 11. Lack of rate-limiting controls 29

 12. Lack of maximum request and response body constraint 31

 Trail of Bits 3 Tekton Security Assessment
 PUBLIC

 13. Nil dereferences in the trigger interceptor logic 32

 A. Vulnerability Categories 35

 B. Running GCatch 37

 C. Hardening Containers Run via Kubernetes 39

 Root Inside Container 39

 Dropping Linux Capabilities 39

 NoNewPrivs Flag 40

 Seccomp Policies 40

 Linux Security Module (AppArmor) 40

 Trail of Bits 4 Tekton Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 The Linux Foundation engaged Trail of Bits to review the security of its Tekton project.
 From February 22 to March 7, 2022, a team of two consultants conducted a security review
 of the client-provided source code, with four person-weeks of effort. Details of the project’s
 timeline, test targets, and coverage are provided in subsequent sections of this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We conducted
 this audit with access to the various Tekton code repositories and supporting
 documentation.

 Summary of Findings
 The audit uncovered one significant flaw that could impact system confidentiality, integrity,
 or availability. However, the majority of the findings are of lesser severity. A summary of
 the findings is provided below.

 EXPOSURE ANALYSIS

 Severity Count

 High 1

 Medium 2

 Low 4

 Informational 6

 CATEGORY BREAKDOWN

 Category Count

 Timing 1

 Data Validation 5

 Denial of Service 3

 Access Controls 1

 Configuration 2

 Documentation 1

 Trail of Bits 5 Tekton Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Cara Pearson , Project Manager
 dan@trailofbits.com cara.pearson@trailofbits.com

 The following engineers were associated with this project:

 Alex Useche , Senior Consultant Shaun Mirani , Consultant
 alex.useche@trailofbits.com shaun.mirani@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 February 17, 2022 Pre-project kickoff call

 February 28, 2022 Status update meeting #1

 March 8, 2022 Delivery of report draft

 March 18, 2022 Delivery of final report

 Trail of Bits 6 Tekton Security Assessment
 PUBLIC

mailto:dan@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of Tekton, with a focus on
 the Tekton Pipelines, Tekton Triggers, and Tekton Dashboard components. Specifically, we
 sought to answer the following non-exhaustive list of questions:

 ● Do the configurations provided for users generally follow best practices for security?

 ● Is there appropriate validation of file system operations such as handling symbolic
 links and setting file permissions?

 ● Are system secrets vulnerable to data exposure?

 ● Could an attacker perform log injection attacks against the application to trick
 operators into performing undesirable actions?

 ● Does the application properly handle errors?

 ● If the application is installed and configured based on official instructions, is it
 reasonably secure by default?

 ● Could attackers use malicious pipelines or triggers to perform container escape
 attacks and access the cluster?

 Trail of Bits 7 Tekton Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the targets listed below.

 Tekton Pipelines

 Repository https://github.com/tektoncd/pipelines/

 Version 99b8b196ea753af36befda8c0e0e1eaa9490ae68

 Type Infrastructure

 Platform UNIX

 Tekton Triggers

 Repository https://github.com/tektoncd/triggers/

 Version 99b8b196ea753af36befda8c0e0e1eaa9490ae68

 Type Infrastructure

 Platform UNIX

 Tekton Dashboard

 Repository https://github.com/tektoncd/dashboard/

 Version bf3f51ac278d4ad49c7930a6abd8aeb0a3976440

 Type Web application

 Trail of Bits 8 Tekton Security Assessment
 PUBLIC

https://github.com/tektoncd/pipelines/
https://github.com/tektoncd/triggers/
https://github.com/tektoncd/dashboard/

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches and their results include the following:

 ● A review of controls protecting the system against denial of service revealed the use
 of insecure functions in a number of places in the codebase and a lack of
 rate-limiting controls (TOB-TKN-11).

 ● A review of secure-use concurrency revealed a minor issue related to the use of
 insecure functions for synchronization (TOB-TKN-1).

 ● An assessment of container security best practices revealed insecure network
 access controls between pods (TOB-TKN-9) and insufficient hardening of TaskRun
 containers (TOB-TKN-7).

 ● A review of the secret handling strategy did not reveal significant concerns.

 ● Investigations into the use of cryptography outside of TLS code paths did not reveal
 any issues.

 ● Fuzzing of the validation logic did not reveal any issues.

 ● A review of the project’s adherence to web application security best practices
 uncovered a high-severity issue allowing the exfiltration of sensitive data from
 Tekton Dashboard (TOB-TKN-5).

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. During this project, we were unable to perform comprehensive testing of the
 following system elements, which may warrant further review:

 ● During the audit, we focused on the pipelines repository as requested by the
 Linux Foundation, and we reviewed the triggers and dashboard codebases in the
 last few days of the audit. No other repositories of the Tekton project were reviewed
 due to time limitations.

 ● The review of the triggers and dashboard repositories was less in-depth than the
 review of the pipelines repository. As a result, we did not review the JavaScript
 logic for Tekton Dashboard or the UI against concerns like cross-site scripting
 attacks.

 Trail of Bits 9 Tekton Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 The use of time.After() in select statements can
 lead to memory leaks

 Timing Low

 2 Risk of resource exhaustion due to the use of
 defer inside a loop

 Denial of Service Informational

 3 Lack of access controls for Tekton Pipelines API Access Controls Informational

 4 Insufficient validation of volumeMounts paths Data Validation Informational

 5 Missing validation of Origin header in WebSocket
 upgrade requests

 Data Validation High

 6 “Import resources" feature does not validate
 repository URL scheme

 Data Validation Informational

 7 Insufficient security hardening of step containers Configuration Low

 8 Tekton allows users to create privileged
 containers

 Documentation Medium

 9 Insufficient default network access controls
 between pods

 Configuration Medium

 10 “Import resources" feature does not validate
 repository path

 Data Validation Informational

 11 Lack of rate-limiting controls Denial of Service Low

 12 Lack of maximum request and response body
 constraint

 Denial of Service Informational

 Trail of Bits 10 Tekton Security Assessment
 PUBLIC

 13 Nil dereferences in the trigger interceptor logic Data Validation Low

 Trail of Bits 11 Tekton Security Assessment
 PUBLIC

 Detailed Findings

 1. The use of time.After() in select statements can lead to memory leaks

 Severity: Low Difficulty: High

 Type: Timing Finding ID: TOB-TKN-1

 Target:
 ● pipeline / pkg/pipelinerunmetrics/metrics.go
 ● pipeline/pkg/taskrunmetrics/metrics.go

 Description
 Calls to time.After in for/select statements can lead to memory leaks because the
 garbage collector does not clean up the underlying Timer object until the timer fires. A new
 timer, which requires resources, is initialized at each iteration of the for loop (and, hence,
 the select statement). As a result, many routines originating from the time.After call
 could lead to overconsumption of the memory.

 for {
 select {
 case <-ctx.Done():

 // When the context is cancelled, stop reporting.
 return

 case <-time.After(r.ReportingPeriod):
 // Every 30s surface a metric for the number of running pipelines.
 if err := r.RunningPipelineRuns(lister); err != nil {

 logger.Warnf("Failed to log the metrics : %v" , err)
 }

 Figure 1.1: tektoncd/pipeline/pkg/pipelinerunmetrics/metrics.go#L290-L300

 for {
 select {
 case <-ctx.Done():

 // When the context is cancelled, stop reporting.
 return

 case <-time.After(r.ReportingPeriod):
 // Every 30s surface a metric for the number of running tasks.
 if err := r.RunningTaskRuns(lister); err != nil {

 logger.Warnf("Failed to log the metrics : %v" , err)
 }

 }

 Trail of Bits 12 Tekton Security Assessment
 PUBLIC

https://github.com/tektoncd/pipeline/blob/99b8b196ea753af36befda8c0e0e1eaa9490ae68/pkg/pipelinerunmetrics/metrics.go#L290-L300

 Figure 1.2: pipeline/pkg/taskrunmetrics/metrics.go#L380-L391

 Exploit Scenario
 An attacker finds a way to overuse a function, which leads to overconsumption of the
 memory and causes Tekton Pipelines to crash.

 Recommendations
 Short term, consider refactoring the code that uses the time.After function in
 for/select loops using tickers. This will prevent memory leaks and crashes caused by
 memory exhaustion.

 Long term, ensure that the time.After method is not used in for/select routines.
 Periodically use the Semgrep query to check for and detect similar patterns.

 References
 ● Use with caution time.After Can cause memory leak (golang)

 ● Golang <-time.After() is not garbage collected before expiry

 Trail of Bits 13 Tekton Security Assessment
 PUBLIC

https://github.com/tektoncd/pipeline/blob/99b8b196ea753af36befda8c0e0e1eaa9490ae68/pkg/taskrunmetrics/metrics.go#L380-L391
https://developpaper.com/use-with-caution-time-after-can-cause-memory-leak-golang/
https://medium.com/@oboturov/golang-time-after-is-not-garbage-collected-4cbc94740082

 2. Risk of resource exhaustion due to the use of defer inside a loop

 Severity: Informational Difficulty: High

 Type: Denial of Service Finding ID: TOB-TKN-2

 Targets:
 ● pipeline/pkg/git/git.go:294
 ● triggers/pkg/sink/sink.go:469

 Description
 The ExecuteInterceptors function runs all interceptors configured for a given trigger
 inside a loop. The res.Body.Close() function is deferred at the end of the loop. Calling
 defer inside of a loop could cause resource exhaustion conditions because the deferred
 function is called when the function exits, not at the end of each loop. As a result,
 resources from each interceptor object are accumulated until the end of the for
 statement. While this may not cause noticeable issues in the current state of the
 application, it is best to call res.Body.Close() at the end of each loop to prevent
 unforeseen issues.

 func (r Sink) ExecuteInterceptors(trInt []*triggersv1.TriggerInterceptor, in
 *http.Request, event [] byte , log *zap.SugaredLogger, eventID string , triggerID
 string , namespace string , extensions map [string] interface {}) ([] byte , http.Header,
 *triggersv1.InterceptorResponse, error) {

 if len (trInt) == 0 {
 return event, in.Header, nil , nil

 }

 // (...)
 for _, i := range trInt {

 if i.Webhook != nil { // Old style interceptor
 // (...)

 defer res.Body.Close()

 Figure 2.1: triggers/pkg/sink/sink.go#L428-L469

 Recommendations
 Short term, rather than deferring the call to res.Body.Close() , add a call to
 res.Body.Close() at the end of the loop.

 Trail of Bits 14 Tekton Security Assessment
 PUBLIC

https://github.com/tektoncd/triggers/blob/0bd41e3c7cf85f60a4072dafd102ad464036462a/pkg/sink/sink.go#L428-L469

 3. Lack of access controls for Tekton Pipelines API

 Severity: Informational Difficulty: Medium

 Type: Access Controls Finding ID: TOB-TKN-3

 Target: Pipelines API

 Description
 The Tekton Pipelines extension uses an API to process requests for various tasks such as
 listing namespaces and creating TaskRuns . While Tekton provides documentation on
 enabling OAuth2 authentication, the API is unauthenticated by default. Should a Tekton
 operator expose the dashboard for other users to monitor their own deployments, every
 API method would be available to them, allowing them to perform tasks on namespaces
 that they do not have access to.

 Figure 3.1: Successful unauthenticated request

 Trail of Bits 15 Tekton Security Assessment
 PUBLIC

https://github.com/tektoncd/dashboard/blob/main/docs/walkthrough/walkthrough-oauth2-proxy.md

 Exploit Scenario
 An attacker discovers the endpoint exposing the Tekton Pipelines API and uses it to
 perform destructive tasks such as deleting PipelineRuns . Furthermore, the attacker can
 discover potentially sensitive information pertaining to deployments configured in Tekton.

 Recommendations
 Short term, add documentation on securing access to the API using Kubernetes security
 controls, including explicit documentation on the security implications of exposing access
 to the dashboard and, therefore, the API.

 Long term, add an access control mechanism for controlling who can access the API and
 limiting access to namespaces as needed and/or possible.

 Trail of Bits 16 Tekton Security Assessment
 PUBLIC

 4. Insu�cient validation of volumeMounts paths

 Severity: Informational Difficulty: Low

 Type: Data Validation Finding ID: TOB-TKN-4

 Target: Various

 Description
 The Tekton Pipelines extension performs a number of validations against task steps
 whenever a task is submitted for Tekton to process. One such validation verifies that the
 path for a volume mount is not inside the /tekton directory. This directory is treated as a
 special directory by Tekton, as it is used for Tekton-specific functionality. However, the
 extension uses strings.HasPrefix to verify that MountPath does not contain the string
 “/tekton/“ without first sanitizing it. As a result, it is possible to create volume mounts inside
 /tekton by using path traversal strings such as /somedir/../tekton/newdir in the
 volumeMounts variable of a task step definition.

 for j, vm := range s.VolumeMounts {
 if strings.HasPrefix(vm.MountPath, "/tekton/") &&

 !strings.HasPrefix(vm.MountPath, "/tekton/home") {
 errs = errs.Also(apis.ErrGeneric(fmt.Sprintf("volumeMount cannot be

 mounted under /tekton/ (volumeMount %q mounted at %q)" , vm.Name, vm.MountPath),
 "mountPath").ViaFieldIndex("volumeMounts" , j))

 }
 if strings.HasPrefix(vm.Name, "tekton-internal-") {

 errs = errs.Also(apis.ErrGeneric(fmt.Sprintf(̀volumeMount name %q
 cannot start with "tekton-internal-"` , vm.Name),
 "name").ViaFieldIndex("volumeMounts" , j))

 }
 }

 Figure 4.1: pipeline/pkg/apis/pipeline/v1beta1/task_validation.go#L218-L226

 The YAML file in the figure below was used to create a volume in the reserved /tekton
 directory.

 apiVersion : tekton.dev/v1beta1
 kind : TaskRun
 metadata :
 name : vol-test

 spec :
 taskSpec :
 steps :
 - image : docker

 Trail of Bits 17 Tekton Security Assessment
 PUBLIC

https://github.com/tektoncd/pipeline/blob/99b8b196ea753af36befda8c0e0e1eaa9490ae68/pkg/apis/pipeline/v1beta1/task_validation.go#L218-L226

 name : client
 workingDir : /workspace
 script : |

 #!/usr/bin/env sh
 sleep 15m

 volumeMounts :
 - mountPath : /certs/client/../../../tekton/mytest
 name : empty-path

 volumes :
 - name : empty-path
 emptyDir : {}

 Figure 4.2: Task run file used to create a volume mount inside an invalid location

 The figure below demonstrates that the previous file successfully created the mytest
 directory inside of the /tekton directory by using a path traversal string.

 $ kubectl exec -i -t vol-test -- /bin/sh
 Defaulted container "step-client" out of: step-client, place-tools (init), step-init
 (init), place-scripts (init)
 /workspace # cd /tekton/
 /tekton # ls
 bin creds downward home mytest results run
 scripts steps termination

 Figure 4.3: Logging into the task pod container, we can now list the mytest directory inside of
 /tekton .

 Recommendations
 Short term, modify the code so that it converts the mountPath string into a file path and
 uses a function such as filepath.Clean to sanitize and canonicalize it before validating it.

 Trail of Bits 18 Tekton Security Assessment
 PUBLIC

https://pkg.go.dev/path/filepath#Clean

 5. Missing validation of Origin header in WebSocket upgrade requests

 Severity: High Difficulty: Medium

 Type: Data Validation Finding ID: TOB-TKN-5

 Target: Dashboard, Kubernetes API

 Description
 Tekton Dashboard uses the WebSocket protocol to provide real-time updates for
 TaskRun s, PipelineRun s, and other Tekton data. The endpoints responsible for
 upgrading the incoming HTTP request to a WebSocket request do not validate the Origin
 header to ensure that the request is coming from a trusted origin (i.e., the dashboard
 itself). As a result, arbitrary malicious web pages can connect to Tekton Dashboard and
 receive these real-time updates, which may include sensitive information, such as the log
 output of TaskRun s and PipelineRun s.

 Exploit Scenario
 A user hosts Tekton Dashboard on a private address, such as one in a local area network or
 a virtual private network (VPN), without enabling application-layer authentication.

 An attacker identifies the URL of the dashboard instance (e.g., http://192.168.3.130:9097)
 and hosts a web page with the following content:

 < script >
 var ws = new
 WebSocket("ws://192.168.3.130:9097/apis/tekton.dev/v1beta1/namespaces/tekton-pipelin
 es/pipelineruns/?watch=true&resourceVersion=1770");
 ws.onmessage = function (event) {
 console.log(event.data);

 }
 </ script >

 Figure 5.1: A malicious web page that extracts Tekton Dashboard WebSocket updates

 The attacker convinces the user to visit the web page. Upon loading it, the user’s browser
 successfully connects to the Tekton Dashboard WebSocket endpoint for monitoring
 PipelineRun s and logs received messages to the JavaScript console. As a result, the
 attacker’s untrusted web origin now has access to real-time updates from a dashboard
 instance on a private network that would otherwise be inaccessible outside of that
 network.

 Trail of Bits 19 Tekton Security Assessment
 PUBLIC

 Figure 5.2: The untrusted origin http://localhost:8080 has access to Tekton Dashboard
 WebSocket messages.

 Recommendations
 Short term, modify the code so that it verifies that the Origin header of WebSocket
 upgrade requests corresponds to the trusted origin on which Tekton Dashboard is served.
 For example, if the origin is not http://192.168.3.130:9097, Tekton Dashboard should reject
 the incoming request.

 Trail of Bits 20 Tekton Security Assessment
 PUBLIC

 6. “Import resources” feature does not validate repository URL scheme

 Severity: Informational Difficulty: Low

 Type: Data Validation Finding ID: TOB-TKN-6

 Target: Dashboard

 Description
 Tekton Dashboard’s “import resources” feature relies on client-side checks to ensure that
 the repository URL adheres to the correct format. As the feature does not implement
 server-side validation, a malicious user can enter URLs with unintended schemes, such as
 file:// , by sending a request directly to the Tekton Dashboard API:

 POST /apis/tekton.dev/v1beta1/namespaces/tekton-pipelines/pipelineruns/ HTTP/1.1
 Host: 192.168.3.130:9097
 Content-Length: 1570
 Accept: application/json
 Tekton-Client: tektoncd/dashboard
 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/95.0.4638.54 Safari/537.36
 Content-Type: application/json
 Origin: http://192.168.3.130:9097
 Referer: http://192.168.3.130:9097/
 Accept-Encoding: gzip, deflate
 Accept-Language: en-US,en;q=0.9
 Connection: close

 {"apiVersion":"tekton.dev/v1beta1","kind":"PipelineRun","metadata":{"name":"import-r
 esources-1234","labels":{"gitServer":"github.com","gitOrg":"trailofbits","gitRepo":"
 audit-tekton","app":"tekton-app","dashboard.tekton.dev/import":"true"}},"spec":{"pip
 elineSpec":{"resources":[{"name":"git-source","type":"git"}],"params":[{"name":"path
 ","description":"The path from which resources are to be
 imported","default":".","type":"string"},{"name":"target-namespace","description":"T
 he namespace in which to create the resources being
 imported","default":"tekton-pipelines","type":"string"}],"tasks":[{"name":"import-re
 sources","taskSpec":{"resources":{"inputs":[{"name":"git-source","type":"git"}]},"pa
 rams":[{"name":"path","description":"The path from which resources are to be
 imported","default":".","type":"string"},{"name":"target-namespace","description":"T
 he namespace in which to create the resources being
 imported","default":"tekton-pipelines","type":"string"}],"steps":[{"name":"import","
 image":"lachlanevenson/k8s-kubectl:latest","command":["kubectl"],"args":["apply","-f
 ","$(resources.inputs.git-source.path)/$(params.path)","-n","$(params.target-namespa
 ce)"]}]},"params":[{"name":"path","value":"$(params.path)"},{"name":"target-namespac
 e","value":"$(params.target-namespace)"}],"resources":{"inputs":[{"name":"git-source
 ","resource":"git-source"}]}}]},"resources":[{"name":"git-source","resourceSpec":{"t
 ype":"git","params":[{"name":"url","value":" file:///etc/hostname "}]}}],"params":[{"n

 Trail of Bits 21 Tekton Security Assessment
 PUBLIC

 ame":"path","value":""},{"name":"target-namespace","value":"default"}]}}

 Figure 6.1: Request to import a repository from the local file system

 The output from the associated PipelineRun shows that the system tried to import
 /etc/hostname and failed:

 {"level":"error","ts":1646703297.3208265,"caller":"git/git.go:55","msg":"Error
 running git [fetch --recurse-submodules=yes --depth=1 origin --update-head-ok
 --force]: exit status 128\nfatal: invalid gitfile format: /etc/hostname \nfatal:
 Could not read from remote repository.\n\nPlease make sure you have the correct
 access rights\nand the repository
 exists.\n","stacktrace":"github.com/tektoncd/pipeline/pkg/git.run\n\tgithub.com/tekt
 oncd/pipeline/pkg/git/git.go:55\ngithub.com/tektoncd/pipeline/pkg/git.Fetch\n\tgithu
 b.com/tektoncd/pipeline/pkg/git/git.go:150\nmain.main\n\tgithub.com/tektoncd/pipelin
 e/cmd/git-init/main.go:53\nruntime.main\n\truntime/proc.go:225"}

 {"level":"fatal","ts":1646703297.3209455,"caller":"git-init/main.go:54","msg":"Error
 fetching git repository: failed to fetch []: exit status
 128","stacktrace":"main.main\n\tgithub.com/tektoncd/pipeline/cmd/git-init/main.go:54
 \nruntime.main\n\truntime/proc.go:225"}

 Figure 6.1: PipelineRun logs showing a failed import from the local file system

 Recommendations
 Short term, modify the code so that it verifies that the repository URL uses the https://
 scheme.

 Trail of Bits 22 Tekton Security Assessment
 PUBLIC

 7. Insu�cient security hardening of step containers

 Severity: Low Difficulty: High

 Type: Configuration Finding ID: TOB-TKN-7

 Target: Pipelines

 Description
 Containers used for running task and pipeline steps have excessive security context
 options enabled. This increases the attack surface of the system, and issues such as Linux
 kernel bugs may allow attackers to escape a container if they gain code execution within a
 Tekton container.

 The figure below shows the security properties of a task container with the docker driver.

 # cat /proc/self/status | egrep 'Name|Uid|Gid|Groups|Cap|NoNewPrivs|Seccomp'

 Name: cat

 Uid: 0 0 0 0

 Gid: 0 0 0 0

 Groups:

 CapInh: 00000000a80425fb

 CapPrm: 00000000a80425fb

 CapEff: 00000000a80425fb

 CapBnd: 00000000a80425fb

 CapAmb: 0000000000000000

 NoNewPrivs: 0

 Seccomp: 0

 Seccomp_filters: 0

 Figure 7.1: The security properties of one of the step containers

 Exploit Scenario
 Eve finds a bug that allows her to run arbitrary code on behalf of a confined process within
 a container, using it to gain more privileges in the container and then to attack the host.

 Recommendations
 Short term, drop default capabilities from containers and prevent processes from gaining
 additional privileges by setting the --cap-drop=ALL and
 --security-opt=no-new-privileges:true flags when starting containers.

 Long term, review and implement the Kubernetes security recommendations in appendix
 C .

 Trail of Bits 23 Tekton Security Assessment
 PUBLIC

 8. Tekton allows users to create privileged containers

 Severity: Medium Difficulty: Medium

 Type: Documentation Finding ID: TOB-TKN-8

 Target: Pipelines

 Description
 Tekton allows users to define task and sidecar objects with a privileged security context,
 which effectively grants task containers all capabilities. Tekton operators can use admission
 controllers to disallow users from using this option. However, information on this
 mitigation in the guidance documents for Tekton Pipelines is insufficient and should be
 made clear.

 If an attacker gains code execution on any of these containers, the attacker could break out
 of it and gain full access to the host machine. We were not able to escape step containers
 running in privileged mode during the time allotted for this audit.

 apiVersion : tekton.dev/v1beta1
 kind : TaskRun
 metadata :
 name : build-push-secret-10

 spec :
 serviceAccountName : build-bot
 taskSpec :
 steps :
 - name : secret
 securityContext :
 privileged : true

 image : ubuntu
 script : |
 #!/usr/bin/env bash
 sleep 20m

 Figure 8.1: TaskRun definition with the privileged security context

 root@build-push-secret-10-pod:/proc/fs# find -type f -maxdepth 5 -writable
 find: warning: you have specified the global option -maxdepth after the argument
 -type, but global options are not positional, i.e., -maxdepth affects tests
 specified before it as well as those specified after it. Please specify global
 options before other arguments.

 Trail of Bits 24 Tekton Security Assessment
 PUBLIC

 ./xfs/xqm
 ./xfs/xqmstat
 ./cifs/Stats
 ./cifs/cifsFYI
 ./cifs/dfscache
 ./cifs/traceSMB
 ./cifs/DebugData
 ./cifs/open_files
 ./cifs/SecurityFlags
 ./cifs/LookupCacheEnabled
 ./cifs/LinuxExtensionsEnabled
 ./ext4/vda1/fc_info
 ./ext4/vda1/options
 ./ext4/vda1/mb_groups
 ./ext4/vda1/es_shrinker_info
 ./jbd2/vda1-8/info
 ./fscache/stats

 Figure 8.2: With the privileged security context in figure 8.1, it is now possible to write to several
 files in /proc/fs , for example.

 Exploit Scenario
 A malicious developer runs a TaskRun with a privileged security context and obtains shell
 access to the container. Using one of various known exploits, he breaks out of the
 container and gains root access on the host.

 Recommendations
 Short term, create clear, easy-to-locate documentation warning operators about allowing
 developers and other users to define a privileged security context for step containers, and
 include guidance on how to restrict such a feature.

 Trail of Bits 25 Tekton Security Assessment
 PUBLIC

 9. Insu�cient default network access controls between pods

 Severity: Medium Difficulty: High

 Type: Configuration Finding ID: TOB-TKN-9

 Target: Pipelines

 Description
 By default, containers deployed as part of task steps do not have any egress or ingress
 network restrictions. As a result, containers could reach services exposed over the network
 from any task step container. For instance, in figure 9.2, a user logs into a container
 running a task step in the developer-group namespace and successfully makes a request
 to a service in a step container in the qa-group namespace.

 root@build-push-secret-35-pod:/# ifconfig
 eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 172.17.0.17 netmask 255.255.0.0 broadcast 172.17.255.255
 ether 02:42:ac:11:00:11 txqueuelen 0 (Ethernet)
 RX packets 21831 bytes 32563599 (32.5 MB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 6465 bytes 362926 (362.9 KB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

 lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 127.0.0.1 netmask 255.0.0.0
 loop txqueuelen 1000 (Local Loopback)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

 root@build-push-secret-35-pod:/# python -m SimpleHTTPServer
 Serving HTTP on 0.0.0.0 port 8000 ...
 172.17.0.16 - - [08/Mar/2022 01:03:50] "GET
 /tekton/creds-secrets/basic-user-pass-canary/password HTTP/1.1" 200 -
 172.17.0.16 - - [08/Mar/2022 01:04:05] "GET
 /tekton/creds-secrets/basic-user-pass-canary/password HTTP/1.1" 200 -

 Figure 9.1: Exposing a simple server in a step container in the developer-group namespace

 root@build-push-secret-35-pod:/# curl

 Trail of Bits 26 Tekton Security Assessment
 PUBLIC

 172.17.0.17:8000/tekton/creds-secrets/basic-user-pass-canary/password

 mySUPERsecretPassword

 Figure 9.2: Reaching the service exposed in figure 9.1 from another container in the qa-group
 namespace

 Exploit Scenario
 An attacker launches a malicious task container that reaches a service exposed via a
 sidecar container and performs unauthorized actions against the service.

 Recommendations
 Short term, enforce ingress and egress restrictions to allow only resources that need to
 speak to each other to do so. Leverage allowlists instead of denylists to ensure that only
 expected components can establish these connections.

 Long term, ensure the use of appropriate methods of isolation to prevent lateral
 movement.

 Trail of Bits 27 Tekton Security Assessment
 PUBLIC

 10. “Import resources" feature does not validate repository path

 Severity: Informational Difficulty: Low

 Type: Data Validation Finding ID: TOB-TKN-10

 Target: Dashboard

 Description
 When importing a resource in Tekton Dashboard, a malicious user can specify a path value
 such as ../../../../../passwd to traverse outside of the cloned repository and cause
 the system to access unintended files.

 While we did not find a way to exploit this issue to read arbitrary files, we observed that, for
 certain files containing invalid YAML document separators, partial file contents were output
 in the PipelineRun logs. For instance, attempting to access ../../../../../bin/cat
 resulted in the following error:

 error: error parsing /workspace/git-source/../../../../../bin/cat: invalid Yaml

 document separator: %s ping statistics ---

 Figure 10.1: Logs revealing partial contents of /bin/cat

 Recommendations
 Short term, add a check to verify that the repository path does not point to locations
 outside of /workspace/git-source .

 Trail of Bits 28 Tekton Security Assessment
 PUBLIC

 11. Lack of rate-limiting controls

 Severity: Low Difficulty: Medium

 Type: Denial of Service Finding ID: TOB-TKN-11

 Target: Dashboard

 Description
 Tekton Dashboard does not enforce rate limiting of HTTP requests. As a result, we were
 able to issue over a thousand requests in just over a minute.

 Figure 11.1: We sent over a thousand requests to Tekton Dashboard without being rate limited.

 Processing requests sent at such a high rate can consume an inordinate amount of
 resources, increasing the risk of denial-of-service attacks through excessive resource
 consumption. In particular, we were able to create hundreds of running “import resources”
 pods that were able to consume nearly all the host’s memory in the span of a minute.

 Trail of Bits 29 Tekton Security Assessment
 PUBLIC

 Exploit Scenario
 An attacker floods a Tekton Dashboard instance with HTTP requests that execute pipelines,
 leading to a denial-of-service condition.

 Recommendations
 Short term, implement rate limiting on all API endpoints.

 Long term, run stress tests to ensure that the rate limiting enforced by Tekton Dashboard
 is robust.

 Trail of Bits 30 Tekton Security Assessment
 PUBLIC

 12. Lack of maximum request and response body constraint

 Severity: Informational Difficulty: High

 Type: Denial of Service Finding ID: TOB-TKN-12

 Target: Various APIs

 Description
 The ioutil.ReadAll function reads from source until an error or an end-of-file (EOF)
 condition occurs, at which point it returns the data that it read. This function is used in
 different files of the Tekton Triggers and Tekton Pipelines codebases to read requests and
 responses. There is no limit on the maximum size of request and response bodies, so using
 ioutil.ReadAll to parse requests and responses could cause a denial of service (due to
 insufficient memory). A denial of service could also occur if an exhaustive resource is
 loaded multiple times. This method is used in the following locations of the codebase:

 File Project

 pkg/remote/oci/resolver.go:L211 Pipelines

 pkg/sink/sink.go:147,465 Triggers

 pkg/interceptors/webhook/webhook.go:77 Triggers

 pkg/interceptors/interceptors.go:176 Triggers

 pkg/sink/validate_payload.go:29 Triggers

 cmd/binding-eval/cmd/root.go:141 Triggers

 cmd/triggerrun/cmd/root.go:182 Triggers

 Recommendations
 Short term, place a limit on the maximum size of request and response bodies. For
 example, this limit can be implemented by using the io.LimitReader function.

 Long term, place limits on request and response bodies globally in other places within the
 application to prevent denial-of-service attacks.

 Trail of Bits 31 Tekton Security Assessment
 PUBLIC

https://pkg.go.dev/io#LimitReader

 13. Nil dereferences in the trigger interceptor logic

 Severity: Low Difficulty: Medium

 Type: Data Validation Finding ID: TOB-TKN-13

 Target:
 ● triggers/pkg/interceptors/github/github.go:85
 ● triggers/pkg/interceptors/bitbucket/bitbucket.go:79
 ● triggers/pkg/interceptors/gitlab/gitlab.go:78
 ● triggers/pkg/interceptors/cel/cel.go:128

 Description
 The Process functions, which are responsible for executing the various triggers for the
 git , gitlab , bitbucket , and cel interceptors, do not properly validate request objects,
 leading to nil dereference panics when requests are submitted without a Context object.

 func (w *Interceptor) Process(ctx context.Context, r *triggersv1.InterceptorRequest)

 *triggersv1.InterceptorResponse {

 headers := interceptors.Canonical(r.Header)

 // (...)

 // Next validate secrets

 if p.SecretRef != nil {

 // Check the secret to see if it is empty

 if p.SecretRef.SecretKey == "" {

 return interceptors.Fail(codes.FailedPrecondition, "github

 interceptor secretRef.secretKey is empty")

 }

 // (...)

 ns, _ := triggersv1.ParseTriggerID(r.Context.TriggerID)

 Figure 13.1: triggers/pkg/interceptors/github/github.go#L48-L85

 We tested the panic by forwarding the Tekton Triggers webhook server to localhost and
 sending HTTP requests to the GitHub endpoint. The Go HTTP server recovers from the
 panic.

 curl -i -s -k -X $'POST' \

 -H $'Host: 127.0.0.1:1934' -H $'Content-Length: 178' \

 --data-binary

 $'{\x0d\x0a\"header\":{\x0d\x0a\"X-Hub-Signature\":[\x0d\x0a\x09\"sig\"\x0d\x0a],\x0

 Trail of Bits 32 Tekton Security Assessment
 PUBLIC

https://github.com/tektoncd/triggers/blob/0bd41e3c7cf85f60a4072dafd102ad464036462a/pkg/interceptors/github/github.go#L48-L85

 d\x0a\"X-GitHub-Event\":[\x0d\x0a\"evil\"\x0d\x0a]\x0d\x0a},\x0d\x0a\"interceptor_pa

 rams\": {\x0d\x0a\x09\"secretRef\":

 {\x0d\x0a\x09\x09\"secretKey\":\"key\",\x0d\x0a\x09\x09\"secretName\":\"name\"\x0d\x

 0a\x09}\x0d\x0a}\x0d\x0a}' \

 $'http://127.0.0.1:1934/github'

 Figure 13.2: The curl request that causes a panic

 2022/03/08 05:34:13 http: panic serving 127.0.0.1:49304: runtime error: invalid

 memory address or nil pointer dereference

 goroutine 33372 [running]:

 net/http.(*conn).serve.func1(0xc0001bf0e0)

 net/http/server.go:1824 +0x153

 panic(0x1c25340, 0x30d6060)

 runtime/panic.go:971 +0x499

 github.com/tektoncd/triggers/pkg/interceptors/github.(*Interceptor).Process(0xc00000

 d248, 0x216fec8, 0xc0003d5020, 0xc0002b7b60, 0xc0000a7978)

 github.com/tektoncd/triggers/pkg/interceptors/github/github.go:85 +0x1f5

 github.com/tektoncd/triggers/pkg/interceptors/server.(*Server).ExecuteInterceptor(0x

 c000491490, 0xc000280200, 0x0, 0x0, 0x0, 0x0, 0x0)

 github.com/tektoncd/triggers/pkg/interceptors/server/server.go:128 +0x5df

 github.com/tektoncd/triggers/pkg/interceptors/server.(*Server).ServeHTTP(0xc00049149

 0, 0x2166dc0, 0xc0000d42a0, 0xc000280200)

 github.com/tektoncd/triggers/pkg/interceptors/server/server.go:57 +0x4d

 net/http.(*ServeMux).ServeHTTP(0xc00042d000, 0x2166dc0, 0xc0000d42a0, 0xc000280200)

 net/http/server.go:2448 +0x1ad

 net/http.serverHandler.ServeHTTP(0xc0000d4000, 0x2166dc0, 0xc0000d42a0,

 0xc000280200)

 net/http/server.go:2887 +0xa3

 net/http.(*conn).serve(0xc0001bf0e0, 0x216ff00, 0xc00042d200)

 net/http/server.go:1952 +0x8cd

 created by net/http.(*Server).Serve

 net/http/server.go:3013 +0x39b

 Figure 13.3: Panic trace

 Exploit Scenario
 As the codebase continues to grow, a new mechanism is added to call one of the Process
 functions without relying on HTTP requests (for instance, via a custom RPC client
 implementation). An attacker uses this mechanism to create a new interceptor. He calls the
 Process function with an invalid object, causing a panic that crashes the Tekton Triggers
 webhook server.

 Trail of Bits 33 Tekton Security Assessment
 PUBLIC

 Recommendations
 Short term, add checks to verify that request Context objects are not nil before
 dereferencing them.

 Trail of Bits 34 Tekton Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 35 Tekton Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 36 Tekton Security Assessment
 PUBLIC

 B. Running GCatch

 This appendix explains how to use GCatch , a tool that automatically detects concurrency
 bugs in Go. It also includes relevant output generated by GCatch when it is run over Tekton
 (figure B.1). We omitted from the figure any output pertaining to packages in which no
 issues were detected and to packages that did not compile. Additionally, we replaced the
 prefix of the package paths ($TKNPIPELINES) with " $TKNPIPELINES " in the figure.

 To run GCatch over the Tekton project, take the following steps:

 1. Clone the GCatch project as a Go package. For example, if your Go root directory
 were ~/go, you would clone the repository to the following package:
 ~/go/src/github.com/system-pclub/GCatch .

 2. Go to the GCatch/GCatch directory and run Installz3.sh and install.sh .

 3. Install the project in the Go root directory and enter the project directory
 (~/go/src/github.com/tekton/pipelines).

 4. Run GCatch by using the following command:

 GCatch -path="$(pwd)" -include=github.com/tektoncd/$REPO
 -checker=BMOC:unlock:double:conflict:structfield:fatal -r
 -compile-error .

 ----------Bug[1]----------

 Type: Double Lock Reason: A Mutex/RWMutex is locked twice. (Note: even

 double RWMutex.RLock() can produce deadlock bug)

 Call Chain (with FN Pointer):

 CloudEvents (at $TKNPIPELINES/pkg/taskrunmetrics/metrics.go: 473) -> Record (at

 $TKNPIPELINES/vendor/knative.dev/pkg/metrics/record.go: 30) -> record (at

 $TKNPIPELINES/vendor/knative.dev/pkg/metrics/config.go: 116) -> optionForResource

 (at $TKNPIPELINES/vendor/knative.dev/pkg/metrics/resource_view.go: 288) -> Do (at

 /usr/local/go/src/sync/once.go: 59) -> doSlow (at /usr/local/go/src/sync/once.go:

 68) -> NewRecorder$1 (at $TKNPIPELINES/pkg/taskrunmetrics/metrics.go: 122) ->

 viewRegister

 Location of the 2 lock operations:

 File: $TKNPIPELINES/pkg/taskrunmetrics/metrics.go:433

 File: $TKNPIPELINES/pkg/taskrunmetrics/metrics.go:133

 ----------Bug[2]----------

 Type: Double Lock Reason: A Mutex/RWMutex is locked twice. (Note: even

 double RWMutex.RLock() can produce deadlock bug)

 Trail of Bits 37 Tekton Security Assessment
 PUBLIC

https://github.com/system-pclub/GCatch/

 Call Chain (with FN Pointer):

 DurationAndCount (at $TKNPIPELINES/pkg/taskrunmetrics/metrics.go: 324) -> Record (at

 $TKNPIPELINES/vendor/knative.dev/pkg/metrics/record.go: 30) -> record (at

 $TKNPIPELINES/vendor/knative.dev/pkg/metrics/config.go: 116) -> optionForResource

 (at $TKNPIPELINES/vendor/knative.dev/pkg/metrics/resource_view.go: 288) -> Do (at

 /usr/local/go/src/sync/once.go: 59) -> doSlow (at /usr/local/go/src/sync/once.go:

 68) -> NewRecorder$1 (at $TKNPIPELINES/pkg/taskrunmetrics/metrics.go: 122) ->

 viewRegister

 Location of the 2 lock operations:

 File: $TKNPIPELINES/pkg/taskrunmetrics/metrics.go:293

 File: $TKNPIPELINES/pkg/taskrunmetrics/metrics.go:133

 ----------Bug[3]----------

 Type: Double Lock Reason: A Mutex/RWMutex is locked twice. (Note: even

 double RWMutex.RLock() can produce deadlock bug)

 Call Chain (with FN Pointer):

 RecordPodLatency (at $TKNPIPELINES/pkg/taskrunmetrics/metrics.go: 425) -> Record (at

 $TKNPIPELINES/vendor/knative.dev/pkg/metrics/record.go: 30) -> record (at

 $TKNPIPELINES/vendor/knative.dev/pkg/metrics/config.go: 116) -> optionForResource

 (at $TKNPIPELINES/vendor/knative.dev/pkg/metrics/resource_view.go: 288) -> Do (at

 /usr/local/go/src/sync/once.go: 59) -> doSlow (at /usr/local/go/src/sync/once.go:

 68) -> NewRecorder$1 (at $TKNPIPELINES/pkg/taskrunmetrics/metrics.go: 122) ->

 viewRegister

 Location of the 2 lock operations:

 File: $TKNPIPELINES/pkg/taskrunmetrics/metrics.go:398

 File: $TKNPIPELINES/pkg/taskrunmetrics/metrics.go:133

 Figure B.1: GCatch results for Tekton Pipelines

 Trail of Bits 38 Tekton Security Assessment
 PUBLIC

 C. Hardening Containers Run via Kubernetes

 This appendix provides context for the hardening of containers spawned by Kubernetes.
 Please note our definitions of the following terms:

 ● Container: This is the isolated “environment” created by Linux features such as
 namespaces, cgroups, Linux capabilities, and AppArmor and secure computing
 (seccomp) profiles. We are specifically concerned with Docker containers since the
 tested environment uses Docker as its container engine.

 ● Host: This is the unconfined environment on the machine running a container (e.g.,
 a process run in global Linux namespaces).

 Root Inside Container
 User namespaces allow for the remapping of user and group IDs between a host and a
 container; unless namespaces are used, the root user inside the container will be the root
 user in the host. In a default configuration of Docker containers, the container features
 limit the actions that the root user can take. However, if a process does not need to be run
 as root, it is best to run it with another user.

 To run a container with another user, use the USER Dockerfile instructions . In Kubernetes,
 one can specify the user ID (UID) and various group IDs (GIDs) (e.g., a primary GID, a file
 system–related GID, and those for supplemental groups) using the runAsUser ,
 runAsGroup , fsGroup , and supplementalGroups attributes of a securityContext field
 of a pod or other objects used to spawn containers.

 Dropping Linux Capabilities
 Linux capabilities split the privileged actions that a root user’s process can perform. Docker
 drops most Linux capabilities for security purposes but leaves others enabled for
 convenience . We recommend dropping all Linux capabilities and then enabling only those
 necessary for the application to function properly.

 Linux capabilities can be dropped in Docker via the --cap-drop=all flag and in
 Kubernetes by specifying capabilities , drop , and --all in the securityContext key
 of the deployment’s container configuration. Then, to restore necessary capabilities, use
 the --cap-add=<cap> flag in a docker run or specify them in capabilities , and use
 add in the securityContext field in the Kubernetes object manifest.

 Trail of Bits 39 Tekton Security Assessment
 PUBLIC

https://docs.docker.com/engine/reference/builder/#user
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://docs.docker.com/engine/reference/run/#:~:text=The%20following%20table%20lists%20the%20Linux%20capability%20options%20which%20are%20allowed%20by%20default%20and%20can%20be%20dropped.
https://docs.docker.com/engine/reference/run/#:~:text=The%20following%20table%20lists%20the%20Linux%20capability%20options%20which%20are%20allowed%20by%20default%20and%20can%20be%20dropped.

 NoNewPrivs Flag
 The NoNewPrivs flag prevents additional privileges for a process or its children from being
 assigned. For example, it prevents a UID/GID from gaining capabilities or privileges by
 executing setuid binaries.

 The NoNewPrivs flag can be enabled in a docker run via the
 --security-opt=no-new-privileges flag. In a Kubernetes deployment, specify
 allowPrivilegeEscalation: false in the securityContext field to enable it.

 Seccomp Policies
 A seccomp policy limits the available system calls and their arguments. Normally, using
 seccomp requires a call to a prctl syscall with a special structure, but Docker simplifies
 the process and allows a seccomp policy to be specified as a JSON file . Using the default
 Docker profile is a good start for implementing a specific policy. Seccomp is disabled by
 default in Kubernetes .

 The seccomp policy can be specified with a --security-opt seccomp=<filepath> flag
 in Docker. In Kubernetes, the seccomp policy can be set either by using a seccompProfile
 key in the securityContext field of a pod (in Kubernetes v1.19 or later) or by using the
 container.seccomp.security.alpha.kubernetes.io/<container_name>:
 <profile_ref> annotation (in pre-v1.19 versions). The Kubernetes documentation
 includes examples of both methods of setting a specific seccomp policy .

 Linux Security Module (AppArmor)
 The Linux Security Module (LSM) is a mechanism that allows kernel developers to hook
 various kernel calls. AppArmor is an LSM used by default in Docker . Another popular LSM is
 SELinux, but since it is more difficult to set up, it is not discussed here.

 AppArmor limits what a process can do and which resources a process can interact with.
 Docker uses its default AppArmor profile, which is generated from this template . When
 Docker is used as a container engine in Kubernetes, the same profile is often used by
 default, depending on the Kubernetes cluster configuration. One can override the
 AppArmor profile in Kubernetes with the following annotation (which is further described
 here):

 container.apparmor.security.beta.kubernetes.io/<container_name>:
 <profile_ref>

 Trail of Bits 40 Tekton Security Assessment
 PUBLIC

https://www.kernel.org/doc/html/latest/userspace-api/no_new_privs.html
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://docs.docker.com/engine/security/seccomp/
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp
https://kubernetes.io/docs/tutorials/clusters/seccomp/#create-a-pod-with-a-seccomp-profile-for-syscall-auditing
https://www.kernel.org/doc/html/v5.6/admin-guide/LSM/index.html
https://docs.docker.com/engine/security/apparmor/
https://github.com/moby/moby/blob/master/profiles/apparmor/template.go
https://kubernetes.io/docs/tutorials/clusters/apparmor/#securing-a-pod

